有四个不同的自然数,它们当中任意两个数的和是2的倍数;任意三个数的和是3的倍数。如果使得这四个数的和尽可能小,这四个数分别是多少?
由其中任意两个数的和都能被2 整除可知要么全是奇数,要么全是偶数,由任意3 个数的和都是3 的倍数可知,全是3的倍数,如果全是偶数,四数全是6的倍数即可;(0,6,12,18)
如果全是奇数,必须满足任意两数的差是6的倍数。综而言之,只要任意两数的差是6的倍数,即可满足题目要求如:(1,7,13,19 )(2,8,14,20 )(3,9,15,21)等.使这4个数的和尽可能少,则取 1,7,13,19
关注公众号回复:奥数答案
即可免费获得密码查看答案
奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。
奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com