五年级学生分成两队参加学校广播操比赛,他们排成甲乙两个方阵,其中甲方阵每边的人数等于8,如果两队合并,可以另排成一个空心的丙方阵,丙方阵每边的人数比乙方阵每边的人数多4人,甲方阵的人数正好填满丙方阵的空心五年级参加广播操比赛的一共有多少人?
若只排列一个乙方阵,则多余的人数为(即甲方阵的人数)8×8=64(人),排列一个实心的丙方阵,不足的人数是:8×8=64(人)假设丙方阵为实心方阵,则乙多的人数是:8×8+8×8=128(人),又根据方阵扩展一层,每边增加2人,丙方阵比乙方阵的外边多4人,丙方阵多于乙方阵的层数是4÷2=2(层),方阵扩展2层,需要增加128人,则方阵最外层的人数是(128+2×4)÷2=68(人),丙方阵的总人数18×18-8×8=260(人)
解:(1)假设丙方阵为实心方阵,则方阵最外层的人数是:(8×8+8×8+2×4)÷2=68(人)
(2)丙方阵最外层每边的人数是:68÷4+1=18(人)
(3)空心丙方阵的总人数:18×18-8×8=324-64=260(人)
答:五年级参加广播操比赛的一共有260人。
关注公众号回复:奥数答案
即可免费获得密码查看答案
奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。
奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com