一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。问一共有多少个这样的数?
设两位数是AB,三位数是CDE,则AB*5=CDE。CDE能被5整除,个位为0或5。若E=0,由于E+C=D,所以C=D;又因为CDE/5的商为两位数,所以百位小于5。当C=1,2,3,4时,D=1,2,3,4,CDE=110,220,330,440。若E=5,当C=1,2,3,4时,D=6,7,8,9,CDE=165,275,385,495。答:一共有8个这样的数。
关注公众号回复:奥数答案
即可免费获得密码查看答案
奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。
奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com