玩具厂生产大小一样的正方体形状的积木,每个面分别涂上红、黄、蓝三种颜色中的一种,每色各涂两个面.当两个积木经过适当的翻动以后,能使各种颜色的面所在位置相同时,它们就被看作是同一种积木块.试说明:最多能涂成多少种不同的积木块?
总可以使下底面为红色.
如果上底面也是红色,通过翻过,可以使前面为黄色,左面不是黄色,这时后面可以是黄色,也可以是蓝色,有2种.
如果上底面不是红色,通过旋转,可以使后面为红色.这时又分两种情况:
(1)前面与上面同色,可以同为黄色,也可以同为蓝色,有2种.
(2)前面与上面不同色,通过翻动,可以使上面为黄色,前面为蓝色这时右面可以是黄色,也可以是蓝色,有2种.
因此,共可涂成2+2+2=6种不同的积木块。
关注公众号回复:奥数答案
即可免费获得密码查看答案
奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。
奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com