在1、4、7、10、13、16、19、22、25、28分成两组,每组五个数,对两组的数分别求和,再将这两个和求差(以大减小),问所求的差最小是多少?
这10个数的和是145,而且每个数除以3都余1,所以无论怎样分组,这两组数的和都是除以3余2。由于145是奇数,所以这两组和不可能相等,至少要相差3,即145=74+71。由于4+7+13+22+28=74,1+10+16+19+25=71,所以相差3的情况是可能的,即所求的差最小是3。
关注公众号回复:奥数答案
即可免费获得密码查看答案
奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。
奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com