冀教版五年级数学上册知识点归纳

更新时间:2022-08-23
类型:doc
大小:247.50 KB
页数:14
下载资料
当前位置:首页 > 小学数学课件 > 冀教版数学课件 > 五年级上册
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
3. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:QQ 403074932
五年级数学上册知识点归纳第一单元小数除法归纳总结1、小数除以整数的计算方法:按照整数除法的法则去除,商的小数点要和被除数的小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除.。2、整数除以整数商是小数的除法:计算整数除以整数的除法时,个位上的数除完还有余数,要先在商的个位的右下角点上小数点,然后在余数后面添0继续除.。当整数部分不够商1时,要用0占位,并在0的右下角点上小数点,同时要在被除数个位的右下角点上小数点,添0再继续除.。3、除数是小数的除法:除数是小数的除法,先移动除数的小数点,使之变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的小数除法进行计算.。把被除数和除数同时扩大相同的倍数,商不变.。4、求积、商的近似值:(1)取积的近似值时,要先精确计算,再根据题目的要求用“四舍五入”法取近似值.。(2)取商的近似值时,可以根据要保留的位数多除出一位,然后用“四舍五入”法取近似值.。(3)积、商取近似值时,一般用“四舍五入”法取近似值,但要根据实际情况,生活中也有按“去尾法”和“进一法”来取近似值的.。5、循环小数:小数的小数部分从某位起一个数字或几个数字依次不断重复出现,这样的小数叫作循环小数.。循环小数取近似值时,如果需要保留的小数位数的下一位在“…”前,可以直接取近似值;如果需要保留的小数位数的下一位超出了“…”前的位数,就把重复出现的数字依次多写几遍,直到找到需要保留的小数位数的下一位,然后按“四舍五入”法取近似值.。14\n小数四则混合运算:小数四则混合运算的运算顺序与整数四则混合运算的运算顺序是相同的,有括号的要先算括号里的,没括号的要先算乘除,再算加减,并按从左到右的顺序依次计算.。第二单元轴对称和平移归纳总结1、轴对称再认识:(1)轴对称图形的定义:把一个图形沿着一条直线对折后,直线两侧的图形能够完全重合,这个图形就叫作轴对称图形.。折痕所在的直线叫作对称轴.。(2)轴对称图形的特点:轴对称图形沿着对称轴对折后,两侧能够完全重合,两侧对称的点完全重合、对称的线段完全重合.。对称点到对称轴的距离相等.。(3)判断轴对称图形的依据:根据轴对称图形的定义和轴对称图形的特点来判断.。(4)绘制轴对称图形的方法:先找出已知图形的几个关键点,然后根据各对称点到对称轴的距离相等的特点,在对称轴的另一侧找出关键点的对称点,最后按已知图形的形状顺次连接各对称点,就绘制出与已知图形成轴对称的图形.。例题画出图形的另一半,使它成为一个轴对称图形.。2、平移:(1)平移的定义:物体或图形沿着直线运动的现象叫作平移.。(2)判断图形平移的方向和距离的方法:可以根据该图上某个顶点或线段平移的方向和距离来确定.。14\n(1)在方格纸上画平移图形的方法:按顺序找出所画图形的几个关键点或线段,按要求移动相应的格数,然后把这些点或线段顺次连接起来.。3、欣赏与设计:(1)一个简单的图形经过轴对称或平移可得到复杂而美丽的图案.。(2)利用轴对称或平移在方格纸上设计简单图案的方法.。1、画出或选择一个基本图形.。2、确定图形变化的方案:轴对称要确定好对称轴,选好对称点(或线段);平移要定好平移的方向和距离.。3、画出设计的图案.。第三单元倍数与因数归纳总结1、最小的自然数是0,没有最大的自然数.。2、我们只在自然数的范围内研究因数和倍数3、如果a×b=c(a、b、c是非零自然数),那么a和b是c的因数,c是a和b的倍数.。因数和倍数是相互依存的.。不能单独说谁是因数,谁是倍数.。要说明谁是谁的因数,谁是谁的倍数.。例题:1、3×9=27,27是______和______倍数,______和______是27的因数2、如果a、b、c是三个不等于零的自然数,那么在a÷b=c中,()和()是()的因数,()是()和()的倍数.。4、一个数的倍数的个数是无限的.。一个数最小的倍数是它本身,没有最大的倍数.。5、一个数的因数的个数是有限的.。一个数最小的因数是1,最大的因数是它本身.。6、找因数的方法(注意有序思考)14\n列乘法算式:例120=1×120=2×60=3×40=4×30=5×24=6×20=8×15=10×12(有序思考,以防遗漏)★因数和倍数的应用例题:(1)100以内16的倍数有(),其中最小的倍数是().。16的全部因数有(),其中最小的因数是(),最大的因数是().。(2)一个数既是16的倍数,又是16的因数,这个数是().。16=()×()=()×()=()×()(3)一个数最小的一个因数是______,最大的因数是______.最小的倍数是______,这个数的倍数的个数是无限的.7、2.3.5倍数的特征2的倍数的特征:个位上的数字是0,2,4,6,8.。5的倍数的特征:个位上的数字是0或5.。3的倍数的特征:各个数位上的数字之和能被3整除.。9的倍数的特征:各个数位上的数字之和能被9整除.。例题1、在下面的横线里填上一个适当的数字.(1)既是2的倍数,又是3的倍数.47()(2)既有因数3,又有因数5.4()1()(3)既是2的倍数,又是5的倍数.529()(4)同时是2、3、5的倍数.7()()(5)同时是3、5的倍数12()514\n2、判断对错(1)一个数既是2的倍数,又是5的倍数,这个数的个位一定是0.______.(2)在小于20的自然数中,既是2的倍数又是3的倍数的数有3个.______(3)一个三位数各个数位上的数字都相同,这个数一定是3的倍数.______.(4)15的倍数一定也是3的倍数______(5)3的倍数一定是奇数______3、用0、5、8、4组成三位数:(1)这个三位数有因数2:______(2)这个三位数有因数5:______(3)这个三位数有因数3:______(4)这个三位数既有因数2,又有因数5:______(5)这个三位数既有因数2,又有因数3:______(6)这个三位数既有因数2和5,又有因数3:______.4、既有因数2,又有因数3的最小数是();既有因数2,又有因数5的最小的数是(),既有因数3,又有因数5的最小数是().。8、偶数:在自然数中,能被2整除的数,叫做偶数;奇数:不能被2整除的数叫奇数.。奇数偶数性质:偶数±偶数=偶数奇数±奇数=偶数偶数±奇数=奇数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数14\n例题1、选出两张数字卡片,按要求组成一个数.3045(1)奇数:______(2)偶数:______(3)5的倍数:______(4)3的倍数:______(5)既是2的倍数,又是3的倍数:______(6)同时是2、3、5的倍数:______.2、判断对错(1)圆圆说:“所有的自然数不是奇数就是偶数.”______.(2)一个自然数不是奇数就是偶数,所以所有的偶数都是合数,所有的奇数都是质数.______.(3)两个奇数的积可能是奇数,也可能是偶数.______.(4)1既是奇数也是质数.______3、(1)有5个连续自然数之和是135,这5个连续自然数是_____________________.(2)有5个连续奇数之和是135,这5个连续奇数是_____________________.4、晚上,小明正开着灯在吃晚饭,顽皮的弟弟按了15下开关,这时灯是______着的,如果再按50下,这时灯是______着的.(填“开”或“关”)9、质数、合数(1)一个数只有1和它本身两个因数,这个数叫作质数.。(2)一个数除了1和它本身外还有别的因数,这个数叫作合数.。(3)判断一个数是质数还是合数,主要看这个数的因数的个数.。只有两个因数的数是质数;有两个以上因数的数是合数.。14\n(4)1既不是质数也不是合数.。最小的质数是2,最小的合数是4.。例题:1、最小的自然数是(),最小的奇数是(),最小的偶数是(),既是偶数又是质数的数是(),最小的质数是(),最小的合数是(),()既不是质数也不是合数.。2、在括号里填上合适的质数8=()+()24=()+()20=()+()28=()+()3、王老师的QQ号码是一个六位数.第一位数:既是偶数又是质数.第二位数:是最小的自然数.第三位数:是4的倍数,又是4的因数.第四位数:既是2的倍数又是3的倍数.第五位数:是奇数又是合数.第六位数:既是质数,又是奇数,并且是12的因数.你知道王老师的QQ号码是多少吗?()第四单元多边形的面积归纳总结1、不规则图形面积的计算方法:(1)数方格(2)转化成规则图形再求面积.。1、小丽家买了新住房,计划在客厅铺地板(客厅形状如下图),请你算一算至少要买多大面积的地板.。(至少用两种不同的算法)14\n2、三角形面积(1)三角形面积=底×高÷2(2)已知三角形面积、三角形的底,求三角形的高三角形的高=三角形面积×2÷底(3)已知三角形面积、三角形的高,求三角形的底三角形的底=三角形面积×2÷高3、平行四边形的面积(1)平行四边形面积=底×高(2)已知平行四边形面积、平行四边形的底,求平行四边形的高平行四边形的高=平行四边形面积÷底(3)已知平行四边形面积、平行四边形的高,求平行四边形的底平行四边形的底=平行四边形面积÷高4、梯形的面积(1)梯形的面积=(上底+下底)×高÷2(2)已知梯形面积、梯形上底、梯形下底,求梯形的高.。梯形的高=梯形的面积×2÷(上底+下底)(3)已知梯形面积、梯形的高,求梯形上底与下底的和.。上底+下底=梯形的面积×2÷高(4)已知梯形面积、梯形的高、梯形上底,求梯形下底.。下底=梯形的面积×2÷高-上底(5)已知梯形面积、梯形的高、梯形下底,求梯形上底.。上底=梯形的面积×2÷高-下底14\n例题多边形底高面积三角形1.5cm0.6cm2.1m8.4平方米1.7dm13.6平方分米平行四边形5.6米4.2米5.1厘米25.5平方厘米1.23分米6.15平方分米梯形上底下底高面积1.2厘米3.4厘米5厘米2.1分米4分米10平方分米1.7分米5分米9.6平方分米1.9米4.3米27.9米第五单元分数的意义归纳总结(一)分数的再认识1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫作分数.。平均分成几份,分母就是几;取了几份,分子就是几.。2、把单位“1”平均分成若干份,表示其中一份的数叫做分数单位.。像、……这样的分数.。14\n例题1、表示把整体“1”平均分成()份,取这样的()份的数.。2、的分数单位是(),它有()个这样的分数单位.。3、“一块菜地的种了黄瓜”中,把()看作单位“1”,平均分成()份,种黄瓜的是这样的()份.。4、把8公顷地平均分成15份,每份是这块地的(),每份是()公顷.。(二)真分数和假分数1、真分数:分子比分母小的分数,叫做真分数.。真分数的分数值小于1.。如:,......等等.。假分数:和真分数相对,分子大于或者等于分母的分数叫假分数,假分数的分数值大于1或等于1.。带分数:由整数部分(不包括0)和真分数合成的数叫作带分数,带分数都大于1.。2、带分数、假分数和整数的互化:把假分数化成整数:要用分子去除以分母,能整除的,所得的商就是整数;把假分数化成带分数:分子除以分母不能整除的,所得的商就是带分数的整数部分,余数就是分数部分的分子,分母不变.。把整数化成假分数:用指定的分母(0除外)作分母,用分母和整数(0除外)的乘积作分子.。把带分数化成假分数:14\n用原来的分母作分母,用分母和整数部分的乘积再加上原来的分子作分子.。3、分数与除法用字母表示分数与除法的关系:a÷b=(b≠0)1、的分数单位是(    ),它有(    )这样的单位,再添上(    )个这样的单位,结果是最小的质数.。 2、分数单位是的最大真分数是(  ),最小假分数是(  ),最小带分数是(    ).。 (三)分数的基本性质分数的分子和分母同时乘或除以同一个不为零的数,分数的大小不变.。分数基本性质是约分和通分的依据.。1、====()÷6=12÷()=()÷()(四)找最大公因数1、两个或几个数公有的因数叫作它们的公因数,其中最大的一个叫作最大公因数.。2、找最大公因数的方法:先分别找出两个数的因数,再从中找到它们公有的因数中最大的一个.。或者用短除法求两个数的最大公因数.。例14\n例题:1、A和B是两个相邻的非零的自然数,它们的最大公因数是().。2、整数A除以整数B(A和B不为零),商是13,那么A和B的最大公因数是().。3、所有非零的自然数的公因数是().。4、求出下面每组数的最大公因数,填在括号里.。20和48()69和115()18和32()24和30()17和25()35和55()78和39()60和48()6、有两根铁丝,一根长26米,另一根长39米,现在要把它们截成相等的小段,每根不许有剩余,每小段最长多少米?一共可以截成多少段?(五)约分1、把一个分数的分子、分母同时除以它们的公因数,分数的值不变,这个过程叫作约分.。约分就是把分数化简成最简分数.。约分时一般用分子和分母的公因数(1除外)去除分数的分子和分母,通常要除到得出最简分数为止.。2、一个分数的分子和分母的公因数只有1,那么这个分数就叫作最简分数.。3、约分只改变分数单位,不改变分数的大小.。(六)找最小公倍数1、两个数公有的倍数叫作公倍数,其中最小的一个数叫作它们的最小公倍数.。2、找最小的公倍数的方法:先列举出两个数公有的倍数,再从中找到它们公有的倍数中最小的一个.。或者用短除法求最小公倍数.。例14\n(七)分数的大小1、通分:把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫作通分.。通分实际上是统一分数单位.。2、通分的方法:找出这些分母的公倍数,然后将分数化成以分母的公倍数为分母的分数.。(一般用原来分母的最小公倍数作通分后分数的分母).。3、比较异分母分数大小的方法:(1)先通分,化成分母相同的分数后再比较大小;(2)化成分子相同的分数后再比较大小.。第六单元组合图形的面积归纳总结1、组合图形的面积(1)组合图形:由几个简单的图形通过不同的方式组合而成的图形.。(2)求组合图形面积的方法:可以先通过分割、添补、割补等方法,使图形变成已学过的规则图形,再计算它的面积.。2、成长的脚印不规则图形面积的估计与计算:(1)数格子,大于半格的记1格,不够半格的记为0.(2)可根据图形确定近似基本图形,通过计算基本图形的面积,估计出原图形的面积.。3、公顷、平方千米测量和计算土地面积时,通常用公顷、平方千米作单位.。1公顷=100001=1000000=100公顷第七单元可能性归纳总结1、谁先走:判断游戏规则是否公平,即判断游戏中的各个事件发生的可能性是否相等.。设计公平的游戏规则,即设计使游戏中各个事件出现的可能性相等的游戏规14\n则.。2、摸球游戏:在可能发生的事件中,如果出现该事件的情况较多,我们就说该事件发生的可能性较大;反之,如果出现该事件的情况较少,我们就说该事件发生的可能性较小.。14

网站简介

奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。

微信公众号

本站点发布的文章作品均来自用户投稿或网络整理,,如部分文章涉及版权问题请及时通过以下方式联系站点负责人。

2016-2021 奥数库-专注奥数知识 闽ICP备2021004933号

奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com

闽公网安备 35021302000396号

闽ICP备2021004933号
返回首页下载文档