xx六年级数学上册单元长方体、正方体教学设计(苏教版)

更新时间:2022-08-29
类型:docx
大小:36.43 KB
页数:24
下载资料
当前位置:首页 > 小学数学课件 > 苏教版数学课件 > 六年级上册
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
3. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:QQ 403074932
XX六年级数学上册单元长方体、正方体教学设计(苏教版)  体积和容积  联系学生的实际生活,引导学生通过观察实物、模型或操作学具,认识长方体和正方体。  组织学生观察和实验,理解体积和容积的含义;指导学生探究长方体和正方体的表面积、体积和容积的计算方法;学会解答有关长方体和正方体的表面积、体积和容积的实际问题;掌握体积和容积的计量单位,学会进行单位间的换算。  在指导学生进行观察、实验、归纳和应用等数学活动中,进一步发展学生的空间观念,增强学生的应用意识,提高学生解决简单实际问题的能力。  在上述教学活动中,培养学生探索知识、发现问题和解决问题的兴趣,使学生体会到数学的价值。  教学长方体和正方体的特征时,可以让学生观察实物或图片,同时也可以让学生举出一些长方体或正方体实物的例子,还可以在认识长方体的特征之前,让学生数一数长方体有几个面。指导学生有序地数,以便研究相对的面的形状和大小的特点。如果有条件的话,还可以组织学生用学具试拼长方体和正方体的框架,这个操作活动有许多变化方式,学生从中会感受到学习数学的乐趣。\n  教学长方体和正方体的表面积时,“剪一剪”是学生在教师指导下完成的。这个活动有两个作用:一是帮助学生进一步加深对长方体和正方体特征的理解,认识什么是长方体和正方体的表面积;二是为推导长方体和正方体表面积的计算公式做准备。“填一填”意在帮助学生找到立体图形与平面图形的对应关系,也是为研究长方体和正方体表面积的不同计算方法做准备。在介绍长方体和正方体表面积的计算方法时,教材突出了两个要点:一是计算长方体和正方体的表面积时,要依据长方体和正方体的特征;二是归纳计算公式。  教学长方体和正方体的体积时,要注意:①重在探究长方体和正方体体积计算公式的推导过程;②给学生较大的思考空间;③边实验,边收集数据,边思考;④在独立思考的基础上,进行合作交流。  教学容积时,教材用举例的方法唤起学生对生活经验的回忆,帮助学生理解容积的含义,建立容积的概念。教学时,可以进行“往盒子里装东西”的活动,帮助学生理解容积的含义。接着教材介绍了升和毫升。教师可以直接告诉学生,计量容积一般就用体积单位,计量液体的体积用升和毫升作单位。认识容积单位和体积单位之间的关系:1L=1d3,1L=1c3。   长方体和正方体的认识2课时   长方体和正方体的表面积2课时   体积和容积2课时\n   长方体和正方体的体积2课时   体积单位间的进率1课时   整理与练习1课时  表面涂色的正方体1课时  长方体的认识  教材第1页的例1。  使学生认识长方体,掌握长方体的特征,初步学会看立体图形。  使学生认识并理解长方体的长、宽、高。  培养学生初步的空间观念和空间想象能力。  认识长方体的特征。  橡皮泥,小刀,萝卜,小棒,。  出示下列图形。  提问:你们认识这些图形吗?谁来说出它们各是什么图形?  教师指出:这些图形都是由线段围成的平面图形。  放大长方形,并通过面的“移动”,变成一个长方体。  教师质疑:这还是一个平面图形吗?你知道这种形状的图形叫什么吗?  教师讲述:长方体是立体图形中的一种,立体图形都占有一定的空间。  举例。\n  教师:在我们日常生活中,有很多物体的形状是长方体,你们能说出几个长方体的物体吗?  教师:同学们举了这么多例子,请你们看看这个木块,它的形状是不是长方体呢?你们都认为这个木块不是长方体,并且都认为刚才举的例子是长方体,那么长方体应具有哪些特征呢?今天这节课,就来认识长方体的特征。  板书课题:长方体的认识  认识面、棱和顶点。  教师操作。  教师示范切萝卜。  观察切面,你发现了什么?  板书:面  教师把萝卜的平面朝下,垂直切下第二刀。  通过观察,你们又发现了什么?摸一摸。  教师讲述:在数学上,两个面相交的线叫作棱。  板书:棱  教师从侧面垂直切下第三刀。  再次观察,教师指名学生用手摸一摸,看看又有什么发现。这个小尖是怎样形成的?  教师讲述:三条棱相交的点叫作顶点。  板书:顶点  学生操作。\n  学生运用橡皮泥和小刀进行实际操作,感知面、棱和顶点。  此环节也可与教师操作同步进行。  根据实物,整体感知长方体的面、棱和顶点。  请学生摸自己准备的长方体盒子,说说感受。  教师将长方体教具的面削下,露出长方体的框架,让学生感受长方体是由面围成的。  教师指着长方体上相邻两个面相交的地方,请学生说出是长方体的什么地方。让学生指指自己学具上棱的位置。  再请学生摸一摸,说出长方体三条棱相交的地方,出现的那个点叫什么。  小组学习,总结长方体的特征。  一个物体具备哪些特征,就可以说它是长方体呢?下面,我们就从面、棱和顶点这三个方面,来研究长方体的特征。  出示讨论题。  ①长方体有几个面?面的大小有什么不同?面的形状有什么特点?  ②长方体有几条棱?棱的长短有什么不同?  ③长方体有几个顶点?  小组讨论,教师巡视指导,并参与讨论。  集体交流,质疑。\n  小组:我们发现长方体有6个面,长方体的6个面都是长方形,而且相对的面完全相同。  第二小组:我们重点讨论了长方体的棱,我们发现长方体有12条棱,每组相对的4条棱,长度都相等。  第三小组:我们数出长方体有8个顶点。  第四小组:我们补充说明一点,其实长方体还有一种特殊情况,就是有4个面是相同的长方形,另外2个相对的面是正方形。  根据学生汇报结果,完成下列板书:  面:6个 都是长方形,相对的面完全相同。  棱:12条 相对的棱长度相等。  顶点:8个。  验证。  演示,验证长方体3组相对的面完全相同。  演示:将长方体前面和后面、左面和右面、上面和下面,一组一组地移动至重合,证实相对的面完全相同。  出示长方体框架模型,每相对的4条棱颜色相同,移动同色棱至重合,让学生确认每相对的4条棱长度相等。  出示长方体上的8个顶点,并用红色标出。数一数,证实长方体有8个顶点。  抽象概括。  通过上面的研究,指名学生说出长方体的特征。\n  长方体有6个面,6个面都是长方形。有的长方体有4个面是长方形,另外2个相对的面是正方形,它是长方体的一种特殊情况。长方体相对的面完全相同,相对的棱长度相等。  认识长方体的立体图。  我们刚才认识的这些长方体,如果把它们画出来,会是什么样的呢?下面我们就来研究如何画图表示长方体。  请同学们拿出自己的长方体盒子,从不同角度观察,看最多能看到它的几个面。  观察后发现,最多能看到它的3个面。  请同学把长方体盒子放在桌子上,继续观察,你看到了哪3个面?哪3个面看不到?  教师出示:  在这个图中你们看到了哪几个面?哪几个面看不到?  教师结合演示,给学生讲述,看不到的面我们用虚线表示。  显示:  这就是长方体的立体图,我们看图的时候要注意,上、下、左、右这四个面画的是平行四边形,但实际表示的都是长方形。  教师请学生到前,用鼠标指出长方体的6个面、12条棱和8个顶点。  认识长方体的长、宽和高。  提问:相交于同一个顶点的有几条棱?\n  教师讲述:相交于同一个顶点的3条棱,分别叫作长方体的长、宽、高。长方体的位置固定以后,我们习惯把底面中较长的棱叫作长,较短的棱叫作宽,和底面垂直的棱叫作高。  教师在中的长方体的立体图上分别标出长、宽、高。  请学生指出自己手中长方体的长、宽、高。  教师改变长方体的位置,请学生辨别它的长、宽、高。  教师说明:长方体的长、宽、高随着长方体所放位置的改变而改变,相交于每个顶点的3条棱的长度,都可以分别叫作长方体的长、宽、高。  填空。  长方体有个面,条棱,个顶点。  长方体相对的面,相对的棱。  说出下面每个长方体的长、宽、高各是多少。  请学生用12根小棒和橡皮泥做一个长方体的框架。  看图,想出长方体的样子,尝试把它画完整。课堂作业新设计  6 12 8  完全相同 长度相等 2、3.略  思维训练  长方体的认识  面:6个 都是长方形,相对的面完全相同。\n  棱:12条 相对的棱长度相等。  顶点:8个。  相交于同一个顶点的3条棱分别叫长方体的长、宽、高。  如果只要求学生按书上提供的表格里的内容进行探究,学生的活动方向可能不是十分明确。  教师引导太多可能把学生的探究活动打乱,严重影响教学效果。  多数学生空间想象力还很薄弱。本节内容是在学生已经探索并掌握长方形及其他常见多边形的特征,并直观认识长方体的基础上,进一步探索长方体的特征。通过学习长方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念,同时也为进一步学习其他立体图形打好基础。  教材一共安排了三个层次的学习活动,让学生由浅入深,由表及里地探索长方体的特征。层次结合实物从整体上感知长方体;第二层次通过对长方体的进一步观察,认识长方体的直观图及其面、棱和顶点;第三层次探索发现长方体面和棱的特征。在此基础上,介绍长方体长、宽、高的含义。  开展观察、操作、测量、比较等活动。\n  学生对长方体有一些直观的认识,教学中让学生通过观察、操作、测量、比较等活动,在学生充分感知的基础上,由浅入深、由表及里地探索长方体的特征,并通过交流,对有关发现加以适当地整理和概括。  观察物体,理解直观图。  观察可以激活学生已有的关于长方体的直观经验,通过交流不断积累长方体表象。让学生在观察物体的基础上,借助多媒体演示,理解长方体的直观图,认识它的面、棱和顶点。这样既遵循了他们的认知规律,又有利于培养他们的空间观念。  突出学生是学习的主体。  在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者。好奇心促使他们什么事都要自己去动手尝试,让学生带着问题去观察操作,目标明确,任务具体。交流反馈时教师又一次提醒学生“是怎样数的”“如何发现的”,目的是把握一切机会教学生掌握学习方法。  长方体的特征歌  长方体,立体型,6面8顶12条棱;12条棱,分三组,4长4宽和4高;  每组都有4条棱,它们平行又相等;6个面对着放,相对面都一样;  一般每面长方形,特殊时刻有两个,面对面是正方形。  正方体的认识  教材第2页的例2。\n  使学生掌握正方体的特征,明确正方体和长方体的关系。  使学生认识正方体的棱长。  让学生建立空间观念,培养学生的动手操作能力。  掌握正方体的特征,理解正方体和长方体的关系。  正方体模型。  长方体有什么特征?  认识正方体的特征。  教师出示一个正方体模型。  提问:这是不是一个长方体?  小组讨论它不是长方体的依据。  学生甲:长方体的6个面都是长方形,而这个物体的6个面都是正方形,它不是长方体。  学生乙:长方体的6个面中相对的面完全相同,而这个物体6个面都相同。  学生丙:长方体的12条棱中,每相对的4条棱长度相等,但这个物体的12条棱长度都相等。  教师:听了他们三位同学的意见后,你们还有其他补充吗?  学生丁:我觉得这个物体也可以说是长方体,因为正方形是特殊的长方形,12条棱都相等,也可以看作三组4条棱长度相等;6个面都相同,也包括了相对的面相同。\n  教师及时评价:你们敢于表达自己的想法,而且说得都很有道理,我同意你们的想法,而且学生丁也说得很有道理,这个物体具备了长方体的所有特征,可以把它看作一个长方体,除此之外,它还具备了自己的特征。  教师引导学生观察,相交于同一个顶点的三条棱的长度有什么特点。  教师讲述:我们把长、宽、高都相等的长方体叫作正方体。  刚才几个同学在判断这个物体时,分别从它的面、棱两方面进行了观察,现在请你们数一数:正方体有几个顶点?  请学生拿出自己的正方体学具,分别从它的面、棱和顶点去观察正方体的特征,并进行总结。  学生自己总结,全班交流,教师根据学生的总结板书:  面:6个 都是正方形,6个面完全相同。  棱:12条 长度都相等。  顶点:8个。  理解长方体和正方体的关系。  通过这两节课的学习,我们认识了长方体和正方体。请判断这两个物体是什么形状。  判断。  出示一个长方体。  学生:这是长方体,因为它具备了长方体的特征。  出示一个正方体。\n  学生:这是正方体,因为它具备了正方体的特征。  观察长方体和正方体,发现它们之间有什么相同点和不同点。  学生集体交流时,教师完善板书。  形  状相 同 点不 同 点  面棱顶点面的形状面积棱长  长  方  体6  个12  条8  个6个面一般都是长方形相对的面的面积相等每组相对的4条棱长度相等  正  方  体6个面都是正方形6个面的面积都相等12条棱的长度都相等  发现长方体和正方体的关系。  教师演示。\n  出示长方体,提问:这是什么图形?教师将长方体不断缩小,逐渐变成正方体。提问:这是什么图形?教师再将正方体缩小,又变成长方体。  教师引导学生思考:长方体变成了正方体,正方体又变成了长方体,你能根据长方体和正方体的特征,发现它们之间有什么样的关系吗?  学生思考讨论。  教师引导学生明确:通过刚才的观察,我们发现正方体具备了长方体的全部特征,正方体是特殊的长方体,长方体中包含着正方体。它们的关系可以用右图来表示。  建立空间观念。  请同学们闭上眼睛,看看哪位同学能想出一个正方体或长方体物体,并能用语言描述它的用途。  学生甲:闭上眼,我眼前出现了一块长方体的橡皮。我要用这块橡皮擦净脏迹,使书更漂亮。  学生乙:闭上眼,我眼前有一个大的正方体纸箱,里面装满了同学们捐给希望小学的图书。  ……  用8个同样大小的正方体小木块拼成一个长方体,可以怎样拼?  填空。  长方体有个面,6个面都是,也可能有2个相对的面是,相对的面的面积,长方体有条棱,每组相对的4条棱的长度都,长方体有个顶点。\n  正方体是的长方体,6个面都是,6个面的面积都,12条棱的长度都。  判断。  长方体和正方体都有6个面、12条棱和8个顶点。  有6个面、12条棱和8个顶点的物体不是长方体就是正方体。  长方体是特殊的正方体。  说一说。  图是正方体,图是长方体。  图③的长、宽、高各是多少?  图①的上面、左面和后面的面积各是多少?  算一算。  一个正方体的棱长之和是48厘米,它的棱长是多少厘米?  计算长方体棱长之和是多少时,有几种算法?怎样算最简便?  把一个长方体模型切成两个小长方体,两个小长方体一共有几个面,几条棱,几个顶点?  为什么?  课堂作业新设计  6 长方形 正方形 相等 12 相等 8 特殊 正方形 相等 相等\n  􀳫 ✕ ✕  ② ①和③ 长6 宽2 高2  上面:7×6=42 左面:6×5=30 后面:7×5=35  48÷12=4 略  思维训练  个面,24条棱,16个顶点。因为多出一个长方体,就多出了6个面、12条棱和8个顶点。  正方体的认识  面:6个 都是正方形,6个面完全相同。  棱:12条 长度都相等。  顶点:8个。  学生在低年级时虽然接触过正方体,但只是直观形象地认识。  多数学生的空间想象力还很薄弱。\n  部分学生在探究“面的大小关系”和“棱的长短关系”时,可能出现迷茫状况,需要教师在学生探究活动时,不断参与和观察学生活动情况,及时给予恰当的补充。长方体和正方体是最基本的立体图形,从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。学生在低年级时虽然接触过长方体和正方体,但只是直观形象的认识,本节课就是要在学生初步认识正方体、了解长方体的特征的基础上,进一步探索正方体的特征。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也为进一步学习其他立体图形打好基础。例2着重引导学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱、顶点的特征,体会正方体和长方体的联系与区别。学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维过程一般又都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学达到事半功倍的效果。  强调知识迁移。  让学生把学习长方体的特征的学习方法迁移到学习正方体的特征上来,使他们快速准确地达到学习目标。  引导学生自主探索。  学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱和顶点的特征,体会正方体和长方体的联系与区别,比较完整地把握长方体和正方体的特征。  老师引导学生按照面、棱、顶点的次序,引导学生找出它们的相同点和不同点并整理成表格。\n  在学生基本掌握了长方体、正方体各自的特征后,可以引导学生按照面、棱、顶点的顺序,通过讨论交流,来总结和概括它们的相同点和不同点,最后整理成表格,使学生明确正方体是特殊的长方体。把本节的重点内容以图文表结合的形式生动形象地展现出来,使学生印象深刻。  正方体的特征歌  正方体,立体型,6面8顶12条棱;  条棱,共一组,它们的长度都相等;  个面都是正方形,它们的面积都相等。  长方体和正方体的表面积  教材第3页的例3和第6页的例4。  通过实际操作,使学生建立长方体和正方体表面积的概念。  使学生知道长方体和正方体表面积的含义。  使学生初步学会计算长方体和正方体的表面积。  建立表面积的概念,初步学会计算长方体和正方体的表面积。  正确建立表面积的概念。  长方体纸盒,正方体纸盒,。长方体和正方体的特征各是什么?  标出长方体纸盒和正方体纸盒的6个面,并说出长方体上面、左面的长和宽分别是多少,面积分别是多少。  建立长方体和正方体表面积的概念。\n  学生操作。  将标有上、下、左、右、前、后6个面的正方体沿棱剪开并展开。  观察。  请学生观察展开图中的正方形与原来正方体的面之间的关系。  小结。  通过观察,引导学生总结出正方体表面积的概念。  板书:正方体6个面的总面积叫作它的表面积。  请学生指一指正方体的表面积。  再次操作。  请学生将标有上、下、左、右、前、后6个面的长方体沿棱剪开并展开。  思考。  展开后的图形与原来长方体的面之间的关系是什么?  观察展开后的图形,你会想到什么?  引导学生明确长方体中面积相等的面是相对的面。  长方体的每个面的长和宽各是多少?  通过思考,学生们会发现每个面的长和宽与长方体的长、宽、高的关系。  小结:长方体的表面积是6个面的面积之和。长方体每个面的长和宽与长方体的长、宽、高有着密切的联系。\n  反馈。  出示下面的图形。  根据长方体的长、宽、高分别说出长方形各个面的长和宽。  长方体的表面积是由哪些面组成的?  师生共同总结长方体和正方体表面积的含义。  学习长方体表面积的计算方法。  出示例4。  做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用硬纸板多少平方厘米?  读题,分析题意。  学生试着解答。  教师巡视,帮助指导。  聆听学生的解题思路。  求至少要用硬纸板多少平方厘米,就是求长方体几个面面积的和?你准备怎样计算?首先要找出每个面的长和宽。根据长方体的长、宽、高可以计算出每个面的面积,把6个面的面积合在一起就是表面积了。  教师指名板演解题过程。  学生甲:分别求出3组相对的面的面积,再相加。  ×4×2+5×4×2+6×5×2  =48+40+60\n  =148  学生乙:分别求出每组相对的面中一个面的面积,相加后再乘2。  ×2  =×2  =74×2  =148  学生丙:分别求出6个面的面积,再相加。  ×5+6×5+5×4+5×4+6×4+6×4  =30+30+20+20+24+24  =148  自主分析比较,发现哪种解法简便?  通过分析比较,发现学生乙的方法最简便。  讨论。  计算长方体表面积最关键的是什么?  试一试。  板书:做一个棱长3分米的正方体纸盒,至少要用硬纸板多少平方分米?  学生独立完成。  集体订正。  教师指名说出怎样算简便。  教师根据学生的叙述板书:3×3×6=54\n  下面哪个图形沿虚线折叠后能围成长方体?先想一想,再折一折。  ①  ②  求下面长方体和正方体的表面积。一个长方体的长是宽的2倍,宽是高的3倍,棱长总和为80厘米。求它的表面积。  课堂作业新设计  ①不能 ②能  ×2=158 7×7×6=294  思维训练  如果把高看作“1”,那么宽就是“3”,长是“3×2=6”。因为长方体共有4条长、4条宽、4条高,而其棱长总和为80厘米,所以“1份”为80÷=2,长是2×6=12,宽是2×3=6,高是2×1=2,表面积是×2=216。  教材习题  教材第3页练一练   2.第1个和第3个能。  练习一  左图:长7c 宽4c 高3c 中图:长6d 宽4d 高5d  右图:长20 宽8 高8  右图是正方体,左图是长方体。 正方体的棱长是5c,有6个面完全相同。\n  长方体的长是5c,宽是4c,高是5c;有2个面是相同的正方形,其余4个面完全相同。  长方形 长5c,宽4c 长方形 长5c,宽3.5c 长方形 长4c,宽3.5c  长方体的下面与上面完全相同,后面与前面完全相同,左面与右面完全相同。  左图:长3厘米,宽2厘米,高2厘米。  中图:长、宽、高都是3厘米,即棱长是3厘米的正方体。  右图:长5厘米,宽2厘米,高2厘米。  列的两个展开图和第二列个和第三个展开图,沿虚线折叠后都可以围成长方体。  10×4=40 7×3=21 4×4=16  a+b+c 4 12a 72  动手做  分析:因为长方体或正方体都是由6个面围成的,所以无论是围成长方体或者是正方体都至少需要6张硬纸片。  方法:把各类硬纸片依次命名为A、B、c、D、E。  围长方体:  选法一:选4张A 2张B 选法二:选4张A 2张E 选法三:选4张c 2张E  选法四:选4张D 2张B 选法五:选2张A 2张c 2张D\n  围正方体:  选法一:选6张B 选法二:选6张E  教材第6页试一试  ×3×6=54  教材第6页练一练  ×4×2+5×2.5×2+2.5×4×2=85 4×4×6=96  长方体和正方体的表面积  正方体6个面的总面积叫作它的表面积。  做一个棱长3分米的正方体纸盒,至少要用多少平方分米的硬纸板?  ×3×6=54  

网站简介

奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。

微信公众号

本站点发布的文章作品均来自用户投稿或网络整理,,如部分文章涉及版权问题请及时通过以下方式联系站点负责人。

2016-2021 奥数库-专注奥数知识 闽ICP备2021004933号

奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com

闽公网安备 35021302000396号

闽ICP备2021004933号
返回首页下载文档