有100根火柴,甲、乙两人轮流取火柴游戏,规定每人每次可取10根以内(包括10根)的任何根火柴,以谁取完火柴使对手已无火柴可取者为胜. 如果开始由甲先取.问谁一定能取胜?他怎样取才能取走? |
先取者甲一定能胜;100=9×11+1,甲开始取1根,余下99根是11的倍数,这时不论乙取多少,甲再取的火柴根数与乙刚才取的数目凑成11,即能得胜. |
关注公众号回复:奥数答案
即可免费获得密码查看答案
奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。
奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com