题目与解析
问题
在下列算式中合适的地方,添上()[],使等式成立。
① 1+2×3+4×5+6×7+8×9=303
②1+2×3+4×5+6×7+8×9=1395
③1+2×3+4×5+6×7+8×9=4455
答案与解析
分析 本题要求在算式中添括号,注意到括号的作用是改变运算的顺序,使括号中的部分先做,而在四则运算中规定 “先乘除,后加减”,要改变这一顺序,往往把括号加在有加、减运算的部分。
题目中三道小题的等号左边完全相同,而右边的得数一个比一个大.要想使得数增大,可以让加数增大或因数增大, 这是考虑本题的基本思想。
①题中,由凑数的思想,通过加( ),应凑出较接近303 的数,注意到1+2×3+4×5+6=33,而33×7=231.较接近303, 而231+8×9=303,就可得到一个解为:
(1+2×3+4×5+6)×7+8×9=303
②题中,得数比①题大得多,要使得数增大,只要把乘法中的因数增大.如果考虑把括号加在7+8上,则有6×(7+8)
×9=810,此时,前面1+2×3+4×5无论怎样加括号也得不到1395-810=585.所以这样加括号还不够大,可以考虑把所有的数都乘以9,即(1+2×3+4×5+6×7+8)×9=693,仍比得数小,还要增大,考虑将括号内的数再增大,即把括号添在(1+2)或(3+4)或(5+6)或(7+8)上,试验一下知 道 , 可 以 有 如 下 的 添 加 法 : [(1+2)×(3+4)×5+6×7+8]×9=1395
③题的得数比②题又要大得多,可以考虑把(7+8)作为一个因数,而1+2×3+4×5+6×(7+8)×9=837,还远小于4455, 为增大得数,试着把括号加在(1+2×3+4×5+6)上,作为一个因数,结果得33,而33×(7+8)×9=4455.这样,得到本题的答案是:
(1+2×3+4×5+6)×(7+8)×9=4455
解:本题的答案是:
①(1+2×3+4×5+6)×7+8×9=303
②[(1+2)×(3+4)×5+6×7+8]×9=1395
③(1+2×3+4×5+6)×(7+8)×9=4455
关注公众号回复:奥数答案
即可免费获得密码查看答案
密码错误
微信搜索天才奥数关注公众号