请将1、2、3、4、5、6、7、8、9这9个数字排列成某种次序,使得:
前两位数可被2整除
前三位数可被3整除
前四位数可被4整除
以此类推,直到9为止。
排成 123 654 987看来好像有希望,因为 12可被 2整除 123可被3整除 1236可被4整除 12 365可被5整除 123 654可被6整除 但可惜,1236 549无法被7整除。再试一次吧! |
分析与解答: 这个题目能使你增进对数字“可除性”(divisibility)的了解。例 如,5一定是在中间位置,因为利用1、2、…9所构成的数字的前五位数,没有其他方式可以被5除尽。因为所有数字的总和是45,所以无论这些数字如何排 列,都可被9除尽。因为前六位数要被6整除,所以前面6位数字的和必须可被3除尽,而且第六位数必须是偶数。同时,还必须使偶数作间隔排列,如此才能被 2、4、6、8所整除。 上述的分析很有帮助,不过要找到能被7整除的数,还是需要试误演算。 唯一的答案是:381 654 729。 但是在这里要提醒你,不要太依赖计算器。因为如果你的计算器只能显示8位数,那么963 258 147看起来就会像是一个答案,因为计算器上会显示出96 325 814可被8整除;但这是不可能的,因为814不能被8整除。 |
关注公众号回复:奥数答案
即可免费获得密码查看答案
奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。
奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com