题目与解析
问题
1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )
A 43,25 B 32,25 C32,15 D 43,11
2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )
A,5 B,6 C,7 D,8
答案与解析
1、解:根据容斥原理最小值68+43-100=11
2、解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。
分别设各类的人数为a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
再由③④得a12+a13+a123=a2+a3-1⑥
当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22
又根据a23=a2-a3×2……⑤可知:a2>a3
然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。
关注公众号回复:奥数答案
即可免费获得密码查看答案
密码错误
微信搜索天才奥数关注公众号