题目与解析
问题
六年级奥数题-综合练习题:某缝纫社有甲、乙、丙、丁4个小组,甲组每天能缝制8件上衣或10条裤子;乙组每天能缝制9件上衣或12条裤子;丙组每天能缝制7件上衣或11条裤子;丁组每天能缝制6件上衣或7条裤子。现在上衣和裤子要配套缝制(每套为一件上衣和一条裤子)。问:7天中这4个小组最多可缝制多少套衣服?
答案与解析
六年级奥数题-综合练习题:分析:不能仅按生产上衣或裤子的数量来安排生产,应该考虑各组生产上衣、裤子的效率高低,在配套下安排生产。
我们首先要说明安排做上衣效率高的多做上衣,做裤子效率高的多做裤子,才能使所做衣服套数最多。
一般情况,设A组每天能缝制a1件上衣或b1条裤子,它们的比为在安排A组尽量多做上衣、B组尽量多做裤子的情况下,安排配套生产。
设甲组生产上衣x天,生产裤子(7-x)天,乙组生产上衣y天,生产裤子(7-y)天,则4个组分别共生产上衣、裤子各为6×7+8x+9y(件)和11×7+10(7-x)+12(7-y)(条)。依题意,得
42+8x+9y=77+70-10x+84-12y,
令u=42+8x+9y,则
显然x越大,u越大。故当x=7时,u取最大值125,此时y的值为3。
答:安排甲、丁组7天都生产上衣,丙组7天全做裤子,乙组3天做上衣,4天做裤子,这样生产的套数最多,共计125套。
关注公众号回复:奥数答案
即可免费获得密码查看答案
密码错误
微信搜索天才奥数关注公众号