有10张扑克牌,点数分别为1,2,3,…,9,10。从中任意取出若干张牌,为了使其中必有几张牌的点数之和等于15,问最少要取多少张牌?
若只取5张牌,有可能不满足条件,例如1,2,8,9,10。因此,最少取的张数不小于6。下面证明6可以满足条件。可以将5-10分成3组:{5,10},{6,9},{7,8},每组至多选一个。则若在1,2,3,4中任意选三个数,它们的和一定在上面三组数中,即6个数必有若干个之和为15。
关注公众号回复:奥数答案
即可免费获得密码查看答案
[ ]
a.●[ ]
a.2007根奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。
奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com