题1
有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
题2
能否把8个数1、2、…、8排列在正八边形的各个顶点上,每个顶点放一个数,使得对于任意位于三个相连顶点上的各数之和:(I)大于11;(II)大于13.
1、解析与答案:
首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
2、答案与解析
(I)能够做到,顺时针依次填写1、8、3、6、4、2、7、5即为一例。
(II)不能做到。假设存在这样的排列,那么一共会有8个和,每个和都至少是14,所以这8个和的总和至少是112。而同时,这8个和的总和应该是把每个数字都用了3遍,所以总和应该等于108,出现矛盾.因此无法按照要求填数。
关注公众号回复:奥数答案
即可免费获得密码查看答案
奥数库(www.aoshuku.com)是一个专注奥数知识扩展和学习的在线教育网站,内容涵盖了奥数题、数学题、试卷、课件、知识点、数学公式等,拥有大量的奥数题库和数学题库,包含全国中小学各个版本教材,深受中小学师生用户喜爱的网站。
奥数库专注奥数知识分享,如有版权作品存在问题或内容中存在违法和不良信息,请立即联系403074932@qq.com